

Practical Steps To Extend the Lives of Bridges

Engineers Ireland,
22 Clyde Road, Ballsbridge, Dublin 4, Ireland
31st January 2014

Adaptive and Semi-Active Vibration Control of Railway Bridge Dynamics

Dr. Andreas Andersson

Royal Institute of Technology (KTH) Stockholm, Sweden

Aim and scope

- Attenuate dynamic effects to allow for:
 - Higher train speeds
 - Higher train loads
 - Extended bridge service life
- Scope of the secondment
 - Develop and implement vibration control, for simulations
 - Develop a prototype damper
 - Demonstrate the damper on a case study bridge

Tuned mass damper (TMD)

- Use a "small" suspended mass to disrupt vibrations from the main structure
- Improved performance using vibration control

Vibration control, TMD applications

- Account for changes in frequency, change k_d
- Real-time feedback,
 e.g. during train passages
- Requires a data acquisition system to control the damper
- Fail-safe: act as passive damper if the control system fails

Case study bridge

- Tied arch steel railway bridge, North of Sweden
- Important for freight transports
- Resonance in the hangers, reduced fatigue service life
- Change in frequency during train passage (increased axial force)
- Different frequencies in the longitudinal and transverse direction

Damper design (multi-passive TMD)

- Tailor made for the case study bridge
- Accounts for changes in frequency during train passage and free vibration
- Transverse and longitudinal vibration

Design

Lab-test at Trinity College Dublin

Mounted on the bridge

Results

Conclusions

- Tuned mass damper systems
 - Good performance for structures prone to resonance
 - Significant improvement using vibration control, for cases of variable frequency excitation
 - Difficult to achieve robust control systems in practice
 - Maintenance and service life of the control system?
- Case study bridge
 - Good performance of the prototype damper
 - Significant reduction of the stress range, results in longer service life
 - Existing pendulum dampers still in service (since 2006),
 performance verified during field measurements in 2012

Thank You

Dr. Andreas Andersson

andreas.andersson@byv.kth.se

Project Website

www.longlifebridges.com

Acknowledgement

Long Life Bridges is a Marie Curie Industry and Academia Partnerships and Pathways project and is funded by the European Commission 7th Framework Programme (IAPP-GA-2011-286276).

